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Analysis of static and dynamic fatigue of 
polycrystalline alumina 
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The fatigue failure of polycrystalline alumina in a moist air environment at 30~ has been 
analysed in terms of a modified Weibull distribution function using fracture mechanics theory. 
The good correlation obtained between the fatigue test data and fracture mechanics theory 
indicates that fatigue is controlled by the slow crack growth of pre-existing flaws. The distri- 
bution of these pre-existing flaws can be represented by the modified Weibull distribution 
which provides an upper and a lower limit strength and thus is more realistic for the physical 
phenomena it represents. Comparison of proof-test predictions with experiment indicate that 
the proof test can be effective in eliminating weak samples from the population. 

1. Introduction 
Ceramic materials are finding increasing use in high 
performance, structural application. However, a 
problem in their utilization is to ensure mechanical 
reliability and safety. Two factors that complicate 
design for their mechanical reliability are delayed 
failure, commonly known as static fatigue, and a wide 
variability in fracture strength due to their brittle 
nature. To make failure predictions for glass and 
ceramic materials, a fundamental theory has been 
developed from fracture mechanics principles [1-4]. 
This theory is based on the assumption that fatigue 
failure occurs by the stress-dependent growth of pre- 
existing flaws to dimensions critical for spontaneous 
crack propagation. On the other hand, scatter in 
strength which is attributed to scatter in initial flaw 
sizes, is usually analysed in terms of the "weakest link 
theory" which is based on the theory that the fracture 
is controlled by the weakest defect of all the defects 
present in a system. The form of the weakest link 
theory commonly applied to ceramic materials is that 
to Weibull [5]. Thus, Weibull analysis combined with 
fracture mechanics principles forms the probabilistic 
basis for the design of ceramic materials. Although the 
fracture mechanics principles provide a sound basis 
for fatigue failure predictions, difficulties are encoun- 
tered in analysing the strength distribution in terms of 
Weibull distribution. Several investigators [6-10] have 
reported that, as predicted by theory, the strength 
data when plotted on a Weibull probability graph, do 
not yield a straight line. As an alternative approach, 
a bimodal Weibull analysis has been used for the 
analysis of data from the view point that the distri- 
bution is controlled by more than one type of flaw 
population. Ritter and Humenik [7] have reported a 
similar analysis for the strength data on polycrystal- 
line alumina, although they could not identify the 
origin of the flaw responsible for two strength popu- 
lations. A modified Weibull distribution function for 

analysing the strength data of ceramic materials has 
been proposed [11, 12]. 

The purpose of this paper is to determine the appli- 
cability of this modified function along with fracture 
mechanics theory in predicting fatigue failure of poly- 
crystalline alumina under various loading conditions. 
Theoretical predictions regarding the probability of 
fatigue failure before and after proof testing have also 
been compared with the experimental data reported 
by Ritter and Humenik [7]. 

2. Analytical procedure 
2.1. Fatigue failure 
The fatigue effect on ceramic materials is usually 
determined by measuring the time to failure as func- 
tion of applied stress and by measuring the depen- 
dence of fracture strength on stressing rate. These 
experimental techniques are usually known as static 
and dynamic fatigue, respectively. 

Based on a single power-law relationship between 
the subcritical crack velocity and the stress intensity 
factor, the time to failure (tr) at a constant applied 
tensile stress (aa) is given by [1, 2] 

tr = BSiU-2aa u (1) 

where Si is the fracture strength in an inert environ- 
ment and B, N are crack growth constants for a given 
material and environment. Similarly, the fracture 
strength (S) at a constant stressing rate (6) is given by 
[2, 13] 

S u+' = B(N + 1)S~-Z6 (2) 

Assuming that the origin of fracture is the same 
for both fatigue and inert failures, the probability of 
failure (F) for a given tf and aa (or a given S and 6) can 
be obtained from Equation 1 (or Equation 2) by 
expressing the inert strength in terms of its failure 
probability distribution. 
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2.2. Probabi l i ty  d is t r ibut ion  func t i on  
The failure analysis of brittle solids is usually based on 
the Weibull distribution function given by 

F = 1 - exp [-(S/S0)  m ] (3) 

where F is the probability of failure at a stress S or 
below, So and m are the scaling parameter and Weibull 
modulus, respectively. Equation 3 shows that a plot of 
lnln[1/(1 - F)] against lnS should yield a straight 
line, Such a plot for the strength data on polycrystal- 
line alumina, reported by Ritter and Humenik [71 is 
shown in Fig. 1. The data points lie on a smooth curve 
rather than on a straight line. From the lack of lin- 
earity of such plots for extensive data reported in the 
literature [6, 14-18] it has been concluded [15] that 
Weibull distribution is not applicable to the entire 
strength distribution. As an alternative approach, a 
bimodal Weibull distribution is usually used for the 
analysis of strength data, though strict application of 
the distribution presumes a single mode of failure [16]. 
Snowden [16] has analysed the statistical justification 
for using a bimodal Weibull distribution and con- 
cluded that the beta distribution, rather than the 
Weibull distribution, describes the data best. In the 
beta distribution, the values of the variate are limited 
to a finite interval, which is more realistic for the 
strength of brittle materials. It has also two shape par- 
ameters. On the other hand, for certainty of failure, 
Weibull distribution requires S = o% which is a 
physically unsatisfactory boundary condition. To 
overcome this limitation, a modification [11, 12] of 
Equation 3 has been proposed in the form 

F = 1 - exp {[(S mj - &)/So] [ ( s o  - s ) / s o y  ~} 

(4) 

where SL and Su are the lower and upper strength limit 
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Figure 1 Weibull plot of strength distribution of polycrystalline 
alumina in ambient air (22~ 70% r.h.) for a stressing rate of 
2000 p.s.i, see- i .  

of the material, S0~, SO2 and rnT,  m 2  are the two location 
and shape parameters, respectively. Equation 4 can be 
expressed in the form 

lnln[1/(l - F)] = mjln[(S - &)/S0,] 

- m 2 1 n [ ( S u  - S ) / S O ~ ]  (5) 

which shows, depending on the parameter values, a 
plot of lnln[1/(1 - F)] against lnS will be a smooth 
curve. 

2.3. Proof  tes t ing  
The proof testing of ceramics is carried out to elim- 
inate the weak samples from the population so that 
the after-proof strength distribution will be stronger 
than the initial distribution. By considering crack 
growth during loading but not unloading, Evans and 
Wiederhorn [1 ] have shown that the inert strength (S,) 
after proof testing is given by 

, N p - 2  , Np 2 ,, ; , x N p - 2 1  
(Si/Si) = 1 - (%/Si) [1 - urp/av) ] 

(6) 

where Np is the fatigue parameter for the proof test 
conditions, Si is the inert strength before proof test 
and a* is the equivalent proof stress for inert con- 
ditions, i.e. the proof stress for an inert proof test 
environment having the same probability of failure as 
that of ap in the actual proof test environment. The 
failure probability after proof test (Fa) is related to the 
initial failure probability (F) by [1] 

F a = ( F -  Fv)/(1 - Fv) (7) 

where Fp is the failure probability of the proof test. 
Thus for a given Np, % and Fp, the after-proof- 
test inert strength distribution can be calculated 
from Equations 6 and 7 and the initial inert strength 
distribution. 

3. Data analysis and discussion 
As mentioned earlier, the fatigue strength data on 
polycrystalline alumina, reported by Ritter and 
Humenik [7] has been used in the following analysis. 
The specimens used by them were alumina bars sin- 
tered at 1550~ and containing about 10% alkaline 
earth, aluminosilicate glassy phase with average grain 
size 4 to 5/~m. The static and dynamic fatigue tests 
were carried out in a controlled air environment of 
30 + 5% r.h. using a four-point bend test, having an 
inner span of 0.625 in. (15.875 mm). Six different stress 
levels were used for static fatigue and dynamic fatigue 
was measured at four different stressing rates. In addi- 
tion, a group of samples were proof tested in ambient 
air (22~ and 70% r.h.) at a stress of 45 000 p.s.i. 
(103p.s.i. = 6.89Nmm-2).  One group of 25 proof- 
tested samples were tested in liquid nitrogen for inert 
strength and the other two groups were subjected to 

T A B L E  I Fatigue parameters for polycrystalline alumina in 
moist air at  30~ [7] 

Test technique N log B (p.s.i? sec) 

Static fatigue 37.70 2,72 
Dynamic fatigue 35.53 3.44 

3865 



1./. 

0.8 

,.~ 0.2 

2.  
-0.4 

= 

. 5  - 1 . 0  

-2.2 

- -2 .8  

--3,J 

, , i , , , , , 

o ._, 

o ~ �9 t~ 

oO o 

�9 B 

'0 ' '. i ' ' ' ' 2, 4 . 0  6 0 8 0 1 0 . 0  1 2 . 0  14 .0  16 ,0  

tn ff (see) 

Figure 2 Comparison of the time-to-failure data 
for polycrystalline alumina in moist air (80% r.h.) 
at 30~ to that predicted ( ) from Equation 
1 coupled with Equation 9 with N = 37.7 and 
log B = 2.72p.s.i.2sec. a a = (o) 35909, (e) 
32 567, (A) 28 500p.s.i. 

18.0 

static fatigue test at applied stresses of  30 000 and 
27 350 p.s.i. Also the fracture strength of another 126 
samples was measured in ambient air (22 ~ C, 70% r.h.) 
at stressing rate of 2000p.s.i. sec -] .  The values of  
parameters N and B as determined by Ritter and 
Humenik [7] from the analysis of static and dynamic 
fatigue data are given in Table 1. These values have 
been used in subsequent analysis. 

Fig. 1 shows a plot of fracture strength of  specimens 
tested in ambient air at stressing rate of 2000 p.s.i, sec-] 
on Weibull axes. For  fitting Equation 5 to the data, 
initial estimates of SL and S, were taken as experi- 
mentally measured lowest and highest strength values, 
respectively. A set of values were assumed for S01 and 
S02 and the values of  ml and m 2 were determined by 
regression analysis of data. From the calculated and 
experimental values oflnln[1/(1 - F)], a least squares 
sum was evaluated for the particular set of parameters 
So] and S02. The computation was then iterated with a 
new set of S01 and S02 until the minimum least squares 
sum was obtained. The procedure was repeated by 
changing the values of S, and SL, again using the 
minimum least squares sum as the criteria for best 
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Figure 3 Comparison of dynamic fatigue data for polycrystalline 
alumina at stress rate (e) 20 and (O) 200p.s.i, sec -~ in moist air 
at 30 ~ C to that predicted ( ) from Equation 2 coupled with 
Equation 9 with N = 37.53 and log B = 3.44p.s.i.2sec. 

3 8 6 6  

fitted distribution, obtained thus, is 

lnln[1/(1 - F)] = 0.101n[(S - 15000)/78000] 

- 2.871n[(60000 - S)/10000] 

( 8 )  

The equation is shown by a solid line in Fig. 1. As 
can be seen from the figure, it shows excellent agree- 
ment with the data. As a measure of goodness of  fit 
between the data and the fitted Equation 8, the sum of  
squares was evaluated from the expression 

Q = 1 - s )  2 <9) 
j = t  j = l  

where ~ is the value of failure stress calculated for the 
appropriate F value from the ranking of failure 
strengths and calculated parameters of the distri- 
bution function; S i is the measured strength values and 

is the mean of the distribution. The value of Q was 
obtained as 0.992, again indicating excellent agree- 
ment between the data and the fitted equation. It 
may be noted that Ritter and Humenik [7] fitted two 
Weibull distributions, as shown by dotted lines in 
Fig. 1, to the data on the assumption that the low 
strength flaws were a result of gross damage incurred 
in grinding the samples. However, their attempts to 
identify the fracture origin in these samples failed. 

Based on the strength distribution given by Equa- 
tion 8, the inert strength distribution was determined 
using Equation 2 and the appropriate parameter 
values given in Table I to be, 

lnln[1/(1 - F)] = 0.241n[(S - 19 000)/69 000] 

- 2.211n[(78 000 - S)/10000] 

(10) 

Figs 2 to 4 compare the experimental results on the 
probability of fatigue failure with that predicted from 
Equations 1 and 2 using the inert strength distribution 
given by Equation 10. In general, there is good agree- 
ment between the predicted and measured distribution 
except for the low-strength values in the dynamic 
fatigue experiment. This is possibly due to the reason 
that the comparison is based on 25 samples, which is 
insufficient to define the low-strength population. 
It may be mentioned that Ritter and Humenik [7] 
reported failures on loading for the static fatigue test 
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at 35 909 p.s.i. The inert strength value corresponding 
to the probability of failure of the third sample is 
estimated to be about 54 176 from Equation 10 and 
the corresponding time to failure at 35 909 p.s.i, is 
obtained as 1.4 sec from Equation 1, indicating almost 
instantaneous failure on loading. Thus this provides 
further evidence of agreement between theory and 
experimental results. 

In Fig 5 the inert strength distribution after proof 
testing in ambient air is compared to the initial inert 
strength distribution and to that predicted theor- 
etically from Equation 6. For the proof stress of 
45 000p.s.i., Fp was estimated to 0.287 and the corre- 

* was obtained as 65294.7p.s.i. from sponding ~p 
Equation 10. Np was taken to be equal to that measured 
in fatigue tests, 37.6. Good agreement is apparent 
between theory and experiment and it is evident that 
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Figure 5 Inert strength distribution of polycrystalline alumina 
(-  - -)  before and (o)  after proof  testing in air compared to ( - - )  
the predicted after proof  strength distribution given by Equa- 
tion 6 where % = 45000p.s.i., Np = 37.6, Fp = 0.287 and 
a* = 65 294.7 p.s.i. 

Figure 4 Comparison of dynamic fatigue data for poly- 
crystalline alumina at stress rate (e)  2000 and (o)  
10000p.s.i. sec ~ in moist air (50%r.h.) at 30~ to that 
predicted ( ) from Equation 2 coupled with Equation 9 
with N = 37.53 and log B = 3.44p.s.i}sec. 

11.0 

proof testing was effective in eliminating the weak 
specimens from the population. 

The lifetime after proof testing (t0 is obtained from 
Equation 1 by replacing tr and S~, 

t; = B ( S i ' ) N - 2 ~ ;  N ( l l )  

Fig: 6 compares the after-proof failure time distri- 
bution at 30 000 p.s.i, to that predicted from Equation 
1 l. Although the data of only nine samples have been 
reported, it is seen that the predicted after-proof life- 
times are in reasonable agreement with experiment. 

4. Conclusions 
1. The probability of fatigue failure of polycrystal- 

line alumina has been analysed in terms of a modified 
Weibull distribution along with fracture mechanics 
theory. The good agreement between the predicted 
and experimental values indicates that fatigue failure 
of alumina occurs by the subcritical crack growth of 
pre-existing flaws and the distribution of these pre- 
existing flaws can be represented by the modified 
Weibull distribution given by Equation 5. 

2. The modified Weibull distribution provides an 
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Figure 6 Comparison of  the after-proof failure time distribution 
at a~ = 30000p.s.i. of polycrystalline alumina in moist air to 
that predicted from Equation 10 with N = 37.7, log B = 2.72 
p.s.i?sec, Fp = 0.16 and a~ = 57 360.97 p.s.i. 
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upper and a lower strength limit and is therefore more 
realistic in defining the strength of brittle materials. 

3. Proof testing of  polycrystalline alumina in 
ambient air can be effective in eliminating weak 
samples from the initial distribution. 
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